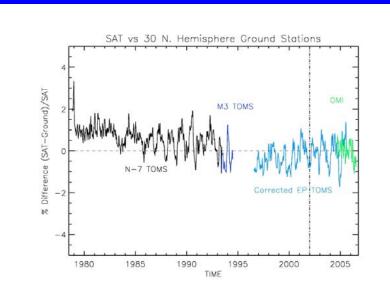
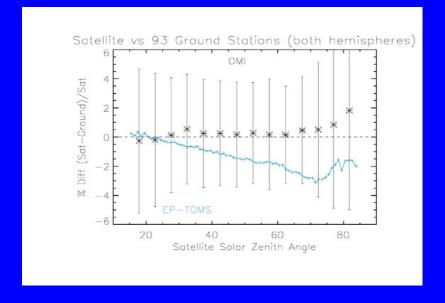


Summary of subgroup results for Total Column Ozone and Tropospheric Ozone

Richard McPeters & Mark Kroon

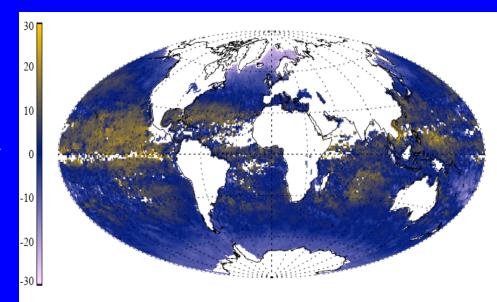
6 talks on total column ozone comparisons 5 talks on tropospheric ozone comparisons results from SAUNA campaign in Sodankyla NATIVE results during INTEX-B cloud pressure retrievals from OMI

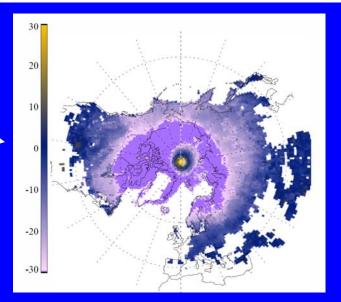

OMI – status of total ozone algorithms


- OMI TOMS v8 algorithm (Bhartia)
 - globally, OMTO3 accuracy ~2% rms accuracy
 - aerosol correction good
 - cloud height uncertainty significant source of error
 - errors of up to 10% do occur, typically for very bright, low clouds
 - accuracy at SZA>80° unknown since nothing is currently available to validate them
- OMI DOAS algorithm v1.0.1 (Veefkind)
 - fixed Solar Irradiance reduces striping
 - cloud fraction is computed internally
 - improved cloud pressure information from OMCLDO2

OMI total column ozone

• OMI TO3 validation (Labow)

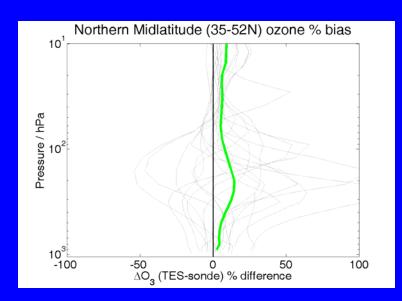

- agrees with data from an ensemble of 76 northern hemisphere groundstations to within 1%
- OMI consistent with previous instruments
- agreement with N-16 SBUV/2 also good
- no zenith angle dependence in OMTO3

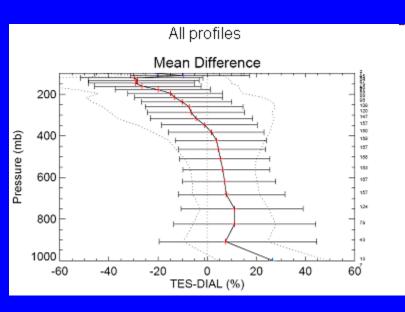


OMI total column ozone (cont.)

- OMI DOAS product (Brinksma, Balis)
 - the average difference between
 OMIDOAO3-v1.01 and Brewer
 observations is 1.6±4.4%
 - there is a residual solar zenith angle dependence

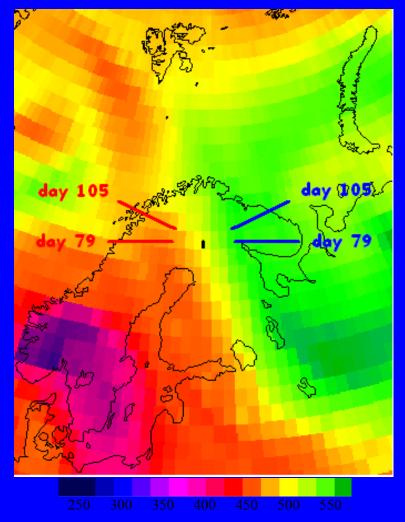
- OMI TO3 vs DOAS differences
 - related to cloud height
 - related to snow / ice treatment




TES total column ozone

- TES v002 compared with OMI and SBUV (Osterman)
 - TES is higher than OMI at most latitudes
 - percent differences less than 3%
 between 70°S and 20°S (often better)
 - differences 3-7% between 10°S and 60°N
 - TES v003 data products will include a tropospheric column

TES tropospheric ozone comparisons



- TES profiles compared with sondes (Worden, Nassar), and airborne lidar (Richards)
 - TES nadir ozone profiles are typically biased high in all three latitude zones
 - mean positive bias of less then 10% in the lower and mid-troposphere.
 - bias is negative in the upper troposphere and increases to up to 30%.

- SAUNA high lat / high ozone results (Bojkov)
 - single Brewer stray light error documented
 - under high gradient conditions
 differences depend on look direction

- Cloud pressure retrievals (Joiner)
 - non-Lambertian behavior produces erroneously low cloud pressures
 - multiple cloud decks produce difference wrt IR, pressures closer to lower cloud deck.

Validation needs

- OMI validation
 - better cloud height
 - cirrus
 - multi-deck clouds
 - very high SZA ozone (>80°)
- TES validation
 - essential to maintain sonde data record
 - sonde launch coincident with close TES overpass needed
 - more sonde data needed in sub-tropics